Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Tissue Engineering Research ; (53): 637-642, 2020.
Article in Chinese | WPRIM | ID: wpr-848151

ABSTRACT

BACKGROUND: In the case of tooth defect or missing, the treatment should be achieved by making a personalized prosthesis. Traditional manufacturing process is time-consuming, costly and accurate. After the introduction of 3D printing technology into dental manufacture, the manufacturing efficiency and quality can be improved to a certain extent. OBJECTIVE: To introduce the application of 3D printing technology in dental manufacture, discuss the bottleneck in recent application, and guide the development of 3D printing technology in dental manufacture. METHODS: The authors used the search times "3D printing, metal implant, dental manufacturing, dental restorations” to search Web of Science, Wanfang, CNKI databases in English and Chinese separately to search papers published during 1980-2019. 261 papers were preliminarily retrieved and 60 of them were included in the final analysis. RESULTS AND CONCLUSION: 3D printing dental mold, digital implant guide plate and wax pattern have been widely used in dental manufacture. 3D printing technology has been widely used in dental manufacture. The most widely used six processes are stereo lithography appearance, laminated object manufacturing, fused deposition modeling, selective laser sintering, selective laser melting, and inkjet printing. There are some technical bottlenecks in the application of 3D printing technology in the field of dental manufacturing. After breaking through technology bottlenecks, 3D printing will be more useful in the field of dental manufacturing in the future.

2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 52-55, 2020.
Article in Chinese | WPRIM | ID: wpr-781209

ABSTRACT

@# Three dimensionally printed composite porous bone tissue engineering scaffolds have become a research focus. Composite polyvinyl alcohol (PVA) has good biocompatibilityand degradability, but it cannot be prepared indepen⁃dently because it cannot resist highmechanical resistance. This material shows many advantages, such as good biocom⁃patibility, degradability and mechanical properties, when compounded with other materials with good mechanical proper⁃ties and good biocompatibility. Therefore, 3D printed composite PVA scaffold material can optimize the performance of PVA scaffolds. This article reviews 3D printing bone scaffold technology, polyvinyl alcohol (PVA), and composite PVA scaffolds for in vivo and in vitro bone formation.

SELECTION OF CITATIONS
SEARCH DETAIL